Home
Website Under Construction
HubBucket Artificial Intelligence - AI Research and Development (R&D)
HubBucket Artificial Intelligence - AI is a R&D Division of HubBucket Inc ("HubBucket")
The HubBucket Artificial Intelligence - AI Research and Development - R&D Division focuses on:
1. Artificial Intelligence - AI
2. Machine Learning - ML
3. Deep Learning - DL
4. Artificial Neural Networks - ANNs
5. Retrieval Augmented Generation - RAG
6. Large Language Models - LLMs
7. Computer Vision
8. Machine Vision
9. Natural Language Processing - NLP
10. Natural Language Understanding - NLU
11. Natural Language Generation - NLG
12. Neural Machine Translation - NMT
13. Algorithms and Models
14. Robot Operating Systems - ROS
15. Robotics
16. Automation
17. Data Science
18. Data Engineering
19. Data Management
20. Data Governance
21. Data Protection
22. Data Privacy
23. Integrity and Ethics in AI Development
What are Large Language Models (LLMs)?
Large Language Models (LLMs) are a category of foundation models trained on immense amounts of data making them capable of understanding and generating natural language and other types of content to perform a wide range of tasks.
LLMs have become a household name thanks to the role they have played in bringing generative AI to the forefront of the public interest, as well as the point on which organizations are focusing to adopt artificial intelligence across numerous business functions and use cases.
Outside of the enterprise context, it may seem like LLMs have arrived out of the blue along with new developments in generative AI. However, many companies, including IBM, have spent years implementing LLMs at different levels to enhance their natural language understanding (NLU) and natural language processing (NLP) capabilities. This has occurred alongside advances in machine learning, machine learning models, algorithms, neural networks and the transformer models that provide the architecture for these AI systems.
LLMs are a class of foundation models, which are trained on enormous amounts of data to provide the foundational capabilities needed to drive multiple use cases and applications, as well as resolve a multitude of tasks. This is in stark contrast to the idea of building and training domain specific models for each of these use cases individually, which is prohibitive under many criteria (most importantly cost and infrastructure), stifles synergies and can even lead to inferior performance.
LLMs represent a significant breakthrough in NLP and artificial intelligence, and are easily accessible to the public through interfaces like Open AI’s Chat GPT-3 and GPT-4, which have garnered the support of Microsoft. Other examples include Meta’s Llama models and Google’s bidirectional encoder representations from transformers (BERT/RoBERTa) and PaLM models. IBM has also recently launched its Granite model series on watsonx.ai, which has become the generative AI backbone for other IBM products like watsonx Assistant and watsonx Orchestrate.
In a nutshell, LLMs are designed to understand and generate text like a human, in addition to other forms of content, based on the vast amount of data used to train them. They have the ability to infer from context, generate coherent and contextually relevant responses, translate to languages other than English, summarize text, answer questions (general conversation and FAQs) and even assist in creative writing or code generation tasks.
They are able to do this thanks to billions of parameters that enable them to capture intricate patterns in language and perform a wide array of language-related tasks. LLMs are revolutionizing applications in various fields, from chatbots and virtual assistants to content generation, research assistance and language translation.
As they continue to evolve and improve, LLMs are poised to reshape the way we interact with technology and access information, making them a pivotal part of the modern digital landscape.
How do Large Language Models (LLMs) work?
LLMs operate by leveraging deep learning techniques and vast amounts of textual data. These models are typically based on a transformer architecture, like the generative pre-trained transformer, which excels at handling sequential data like text input. LLMs consist of multiple layers of neural networks, each with parameters that can be fine-tuned during training, which are enhanced further by a numerous layer known as the attention mechanism, which dials in on specific parts of data sets.
During the training process, these models learn to predict the next word in a sentence based on the context provided by the preceding words. The model does this through attributing a probability score to the recurrence of words that have been tokenized— broken down into smaller sequences of characters. These tokens are then transformed into embeddings, which are numeric representations of this context.
To ensure accuracy, this process involves training the LLM on a massive corpora of text (in the billions of pages), allowing it to learn grammar, semantics and conceptual relationships through zero-shot and self-supervised learning. Once trained on this training data, LLMs can generate text by autonomously predicting the next word based on the input they receive, and drawing on the patterns and knowledge they've acquired. The result is coherent and contextually relevant language generation that can be harnessed for a wide range of NLU and content generation tasks.
Model performance can also be increased through prompt engineering, prompt-tuning, fine-tuning and other tactics like reinforcement learning with human feedback (RLHF) to remove the biases, hateful speech and factually incorrect answers known as “hallucinations” that are often unwanted byproducts of training on so much unstructured data. This is one of the most important aspects of ensuring enterprise-grade LLMs are ready for use and do not expose organizations to unwanted liability, or cause damage to their reputation.
Why are Large Language Models (LLMs) important?
Large language models are incredibly flexible. One model can perform completely different tasks such as answering questions, summarizing documents, translating languages and completing sentences. LLMs have the potential to disrupt content creation and the way people use search engines and virtual assistants.
While not perfect, LLMs are demonstrating a remarkable ability to make predictions based on a relatively small number of prompts or inputs. LLMs can be used for Generative AI (Artificial Intelligence) to produce content based on input prompts in human language.